Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Assist Tomogr ; 47(6): 959-966, 2023.
Article in English | MEDLINE | ID: mdl-37948372

ABSTRACT

OBJECTIVE: This study aimed to perform an assessment of brain microstructure in children with autism aged 2 to 5 years using relaxation times acquired by synthetic magnetic resonance imaging. MATERIALS AND METHODS: Thirty-four children with autism spectrum disorder (ASD) (ASD group) and 17 children with global developmental delay (GDD) (GDD group) were enrolled, and synthetic magnetic resonance imaging was performed to obtain T1 and T2 relaxation times. The differences in brain relaxation times between the 2 groups of children were compared, and the correlation between significantly changed T1/T2 and clinical neuropsychological scores in the ASD group was analyzed. RESULTS: Compared with the GDD group, shortened T1 relaxation times in the ASD group were distributed in the genu of corpus callosum (GCC) ( P = 0.003), splenium of corpus callosum ( P = 0.002), and right thalamus (TH) ( P = 0.014), whereas shortened T2 relaxation times in the ASD group were distributed in GCC ( P = 0.011), left parietal white matter ( P = 0.035), and bilateral TH (right, P = 0.014; left, P = 0.016). In the ASD group, the T2 of the left parietal white matter is positively correlated with gross motor (developmental quotient [DQ] 2) and personal-social behavior (DQ5), respectively ( r = 0.377, P = 0.028; r = 0.392, P = 0.022); the T2 of the GCC was positively correlated with DQ5 ( r = 0.404, P = 0.018); and the T2 of the left TH is positively correlated with DQ2 and DQ5, respectively ( r = 0.433, P = 0.009; r = 0.377, P = 0.028). All significantly changed relaxation values were not significantly correlated with Childhood Autism Rating Scale scores. CONCLUSIONS: The shortened relaxometry times in the brain of children with ASD may be associated with the increased myelin content and decreased water content in the brain of children with ASD in comparison with GDD, contributing the understanding of the pathophysiology of ASD. Therefore, the T1 and T2 relaxometry may be used as promising imaging markers for ASD diagnosis.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , White Matter , Humans , Child, Preschool , Child , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology
2.
Contrast Media Mol Imaging ; 2021: 5545178, 2021.
Article in English | MEDLINE | ID: mdl-34366725

ABSTRACT

Objective: Pre-eclampsia (PE) can cause brain development delay in infants. This work aims to characterize the pattern differences of brain white matter development in premature infants under PE conditions and those without. Methods: Eighty preterm infants delivered by women with PE were selected as the PE group, and ninety-six preterm infants of the same period born to women without high-risk perinatal factors were used as control. All infants underwent diffusion tensor imaging (DTI) examination. The fractional anisotropy (FA) was measured in five regions of interests (ROIs), including posterior limbs of internal capsule (PLIC), splenium of the corpus callosum (SCC), superior frontal gyrus (SFG), superior parietal lobule (SPL), and superior occipital gyrus (SOG). The relationship between the FA values and postmenstrual age (PMA) was analyzed. Results: After adjusting for the birth weight and gestational ages, in the SCC and PLIC, the PMA and FA values showed a low-to-medium intensity positive correlation in the control group (r = 0.30, p=0.003; r = 0.53, p < 0.0001), while no positive relevance was detected in the PE group (r = 0.08, p=0.47; r = 0.19, p < 0.08). In the PE and control groups, in the SPL and SOG, the PMA and FA values showed a near-consistent positive correlation (r = 0.57, r = 0.55 vs. r = 0.31, r = 0.55; all p < 0.05). In the control group, in SFG, the PMA and FA values had a medium intensity positive correlation (r = 0.47, p < 0.0001), but there was no statistical difference in correlation in PE (r = 0.10, p=0.39). Conclusion: PE may cause lagging brain development in the SCC, PLIC, and SFG during infancy. DTI may be an effective and sensitive detection tool.


Subject(s)
Brain/pathology , Diffusion Tensor Imaging/methods , Fetal Growth Retardation/diagnosis , Pre-Eclampsia/physiopathology , Adult , Brain/embryology , Case-Control Studies , Female , Fetal Growth Retardation/etiology , Follow-Up Studies , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Male , Pregnancy , Prognosis
3.
J Comput Assist Tomogr ; 44(6): 947-952, 2020.
Article in English | MEDLINE | ID: mdl-33196602

ABSTRACT

OBJECTIVE: The objective of this study was to investigate clinical neurocognitive performance and microstructural white matter (WM) alterations in infants of mothers with gestational diabetes mellitus (GDM) using diffusion tensor imaging. MATERIALS AND METHODS: Infants (corrected gestational age, 33.42-36.00 weeks) of mothers with GDM (n = 31) and gestational age- and sex-matched unexposed controls (n = 31) accomplished 3-T diffusion tensor imaging scans and neurocognitive tests. Diffusion tensor imaging measures, mainly referring to fractional anisotropy (FA) values, were compared between 2 groups, and within-group analysis of correlation between FA values and neurocognitive testing outcomes in GDM-exposed infants was conducted subsequently. RESULTS: Fractional anisotropy was significantly decreased in the splenium of corpus callosum, posterior limb of internal capsule, thalamus in infants of mothers with GDM when compared with controls (P < 0.05), reflecting microstructural WM abnormalities in the GDM group. Decreased FA was associated with worse neurocognitive performance in the exposed group (P < 0.05). CONCLUSIONS: Individuals of mothers with GDM showed microstructural WM abnormalities in different brain regions, which were significantly related to worse neurocognitive performance. This might reveal that GDM directly insults the brain development of the offspring.


Subject(s)
Brain/physiopathology , Diabetes, Gestational/epidemiology , Diabetes, Gestational/physiopathology , Diffusion Tensor Imaging/methods , Neurocognitive Disorders/epidemiology , Neurocognitive Disorders/physiopathology , Adult , Brain/diagnostic imaging , Brain/growth & development , Causality , China , Female , Humans , Infant, Newborn , Male , Mental Status and Dementia Tests/statistics & numerical data , Mothers , Neurocognitive Disorders/diagnosis , Pregnancy , White Matter/diagnostic imaging , White Matter/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...